HOME -> Google -> Google Professional Machine Learning Engineer

Professional-Machine-Learning-Engineer Dumps Questions With Valid Answers


DumpsPDF.com is leader in providing latest and up-to-date real Professional-Machine-Learning-Engineer dumps questions answers PDF & online test engine.


  • Total Questions: 285
  • Last Updation Date: 21-Jan-2025
  • Certification: Machine Learning Engineer
  • 96% Exam Success Rate
  • Verified Answers by Experts
  • 24/7 customer support
Guarantee
PDF
$20.99
$69.99
(70% Discount)

Online Engine
$25.99
$85.99
(70% Discount)

PDF + Engine
$30.99
$102.99
(70% Discount)


Getting Ready For Machine Learning Engineer Exam Could Never Have Been Easier!

You are in luck because we’ve got a solution to make sure passing Google Professional Machine Learning Engineer doesn’t cost you such grievance. Professional-Machine-Learning-Engineer Dumps are your key to making this tiresome task a lot easier. Worried about the Machine Learning Engineer Exam cost? Well, don’t be because DumpsPDF.com is offering Google Questions Answers at a reasonable cost. Moreover, they come with a handsome discount.

Our Professional-Machine-Learning-Engineer Test Questions are exactly like the real exam questions. You can also get Google Professional Machine Learning Engineer test engine so you can make practice as well. The questions and answers are fully accurate. We prepare the tests according to the latest Machine Learning Engineer context. You can get the free Google dumps demo if you are worried about it. We believe in offering our customers materials that uphold good results. We make sure you always have a strong foundation and a healthy knowledge to pass the Google Professional Machine Learning Engineer Exam.

Your Journey to A Successful Career Begins With DumpsPDF! After Passing Machine Learning Engineer


Google Professional Machine Learning Engineer exam needs a lot of practice, time, and focus. If you are up for the challenge we are ready to help you under the supervisions of experts. We have been in this industry long enough to understand just what you need to pass your Professional-Machine-Learning-Engineer Exam.


Machine Learning Engineer Professional-Machine-Learning-Engineer Dumps PDF


You can rest easy with a confirmed opening to a better career if you have the Professional-Machine-Learning-Engineer skills. But that does not mean the journey will be easy. In fact Google exams are famous for their hard and complex Machine Learning Engineer certification exams. That is one of the reasons they have maintained a standard in the industry. That is also the reason most candidates sought out real Google Professional Machine Learning Engineer exam dumps to help them prepare for the exam. With so many fake and forged Machine Learning Engineer materials online one finds himself hopeless. Before you lose your hopes buy the latest Google Professional-Machine-Learning-Engineer dumps Dumpspdf.com is offering. You can rely on them to get you to pass Machine Learning Engineer certification in the first attempt.Together with the latest 2020 Google Professional Machine Learning Engineer exam dumps, we offer you handsome discounts and Free updates for the initial 3 months of your purchase. Try the Free Machine Learning Engineer Demo now and find out if the product matches your requirements.

Machine Learning Engineer Exam Dumps


1

Why Choose Us

3200 EXAM DUMPS

You can buy our Machine Learning Engineer Professional-Machine-Learning-Engineer braindumps pdf or online test engine with full confidence because we are providing you updated Google practice test files. You are going to get good grades in exam with our real Machine Learning Engineer exam dumps. Our experts has reverified answers of all Google Professional Machine Learning Engineer questions so there is very less chances of any mistake.

2

Exam Passing Assurance

26500 SUCCESS STORIES

We are providing updated Professional-Machine-Learning-Engineer exam questions answers. So you can prepare from this file and be confident in your real Google exam. We keep updating our Google Professional Machine Learning Engineer dumps after some time with latest changes as per exams. So once you purchase you can get 3 months free Machine Learning Engineer updates and prepare well.

3

Tested and Approved

90 DAYS FREE UPDATES

We are providing all valid and updated Google Professional-Machine-Learning-Engineer dumps. These questions and answers dumps pdf are created by Machine Learning Engineer certified professional and rechecked for verification so there is no chance of any mistake. Just get these Google dumps and pass your Google Professional Machine Learning Engineer exam. Chat with live support person to know more....

Google Professional-Machine-Learning-Engineer Exam Sample Questions


Question # 1

You are developing a custom TensorFlow classification model based on tabular data. Your raw data is stored in BigQuery contains hundreds of millions of rows, and includes both categorical and numerical features. You need to use a MaxMin scaler on some numerical features, and apply a one-hot encoding to some categorical features such as SKU names. Your model will be trained over multiple epochs. You want to minimize the effort and cost of your solution. What should you do?
A. 1 Write a SQL query to create a separate lookup table to scale the numerical features.
2. Deploy a TensorFlow-based model from Hugging Face to BigQuery to encode the text features.
3. Feed the resulting BigQuery view into Vertex Al Training.
B. 1 Use BigQuery to scale the numerical features.
2. Feed the features into Vertex Al Training.
3 Allow TensorFlow to perform the one-hot text encoding.
C. 1 Use TFX components with Dataflow to encode the text features and scale the numerical features.
2 Export results to Cloud Storage as TFRecords.
3 Feed the data into Vertex Al Training.
D. 1 Write a SQL query to create a separate lookup table to scale the numerical features.
2 Perform the one-hot text encoding in BigQuery.
3. Feed the resulting BigQuery view into Vertex Al Training.


C. 1 Use TFX components with Dataflow to encode the text features and scale the numerical features.
2 Export results to Cloud Storage as TFRecords.
3 Feed the data into Vertex Al Training.

Explanation:

TFX (TensorFlow Extended) is a platform for end-to-end machine learning pipelines. It provides components for data ingestion, preprocessing, validation, model training, serving, and monitoring. Dataflow is a fully managed service for scalable data processing. By using TFX components with Dataflow, you can perform feature engineering on large-scale tabular data in a distributed and efficient way. You can use the Transform component to apply the MaxMin scaler and the one-hot encoding to the numerical and categorical features, respectively. You can also use the ExampleGen component to read data from BigQuery and the Trainer component to train your TensorFlow model. The output of the Transform component is a TFRecord file, which is a binary format for storing TensorFlow data. You can export the TFRecord file to Cloud Storage and feed it into Vertex AI Training, which is a managed service for training custom machine learning models on Google Cloud.

References:

TFX | TensorFlow
Dataflow | Google Cloud
Vertex AI Training | Google Cloud




Question # 2

You have been given a dataset with sales predictions based on your company’s marketing activities. The data is structured and stored in BigQuery, and has been carefully managed by a team of data analysts. You need to prepare a report providing insights into the predictive capabilities of the data. You were asked to run several ML models with different levels of sophistication, including simple models and multilayered neural networks. You only have a few hours to gather the results of your experiments. Which Google Cloud tools should you use to complete this task in the most efficient and self-serviced way?
A. Use BigQuery ML to run several regression models, and analyze their performance.
B. Read the data from BigQuery using Dataproc, and run several models using SparkML.
C. Use Vertex AI Workbench user-managed notebooks with scikit-learn code for a variety of ML algorithms and performance metrics.
D. Train a custom TensorFlow model with Vertex AI, reading the data from BigQuery featuring a variety of ML algorithms.


A. Use BigQuery ML to run several regression models, and analyze their performance.
Explanation:

Option A is correct because using BigQuery ML to run several regression models, and analyze their performance is the most efficient and self-serviced way to complete the task. BigQuery ML is a service that allows you to create and use ML models within BigQuery using SQL queries1. You can use BigQuery ML to run different types of regression models, such as linear regression, logistic regression, or DNN regression2. You can also use BigQuery ML to analyze the performance of your models, such as the mean squared error, the accuracy, or the ROC curve3. BigQuery ML is fast, scalable, and easy to use, as it does not require any data movement, coding, or additional tools4.

Option B is incorrect because reading the data from BigQuery using Dataproc, and running several models using SparkML is not the most efficient and self-serviced way to complete the task. Dataproc is a service that allows you to create and manage clusters of virtual machines that run Apache Spark and other open-source tools5. SparkML is a library that provides ML algorithms and utilities for Spark. However, this option requires more effort and resources than option A, as it involves moving the data from BigQuery to Dataproc, creating and configuring the clusters, writing and running the SparkML code, and analyzing the results.

Option C is incorrect because using Vertex AI Workbench user-managed notebooks with scikit-learn code for a variety of ML algorithms and performance metrics is not the most efficient and self-serviced way to complete the task. Vertex AI Workbench is a service that allows you to create and use notebooks for ML development and experimentation. Scikit-learn is a library that provides ML algorithms and utilities for Python. However, this option also requires more effort and resources than option A, as it involves creating and managing the notebooks, writing and running the scikit-learn code, and analyzing the results.

Option D is incorrect because training a custom TensorFlow model with Vertex AI, reading the data from BigQuery featuring a variety of ML algorithms is not the most efficient and self-serviced way to complete the task. TensorFlow is a framework that allows you to create and train ML models using Python or other languages. Vertex AI is a service that allows you to train and deploy ML models using built-in algorithms or custom containers. However, this option also requires more effort and resources than option A, as it involves writing and running the TensorFlow code, creating and managing the training jobs, and analyzing the results.

References:

BigQuery ML overview
Creating a model in BigQuery ML
Evaluating a model in BigQuery ML
BigQuery ML benefits
Dataproc overview
[SparkML overview]
[Vertex AI Workbench overview]
[Scikit-learn overview]
[TensorFlow overview]
[Vertex AI overview]




Question # 3

You work for a large retailer and you need to build a model to predict customer churn. The company has a dataset of historical customer data, including customer demographics, purchase history, and website activity. You need to create the model in BigQuery ML and thoroughly evaluate its performance. What should you do?
A. Create a linear regression model in BigQuery ML and register the model in Vertex Al Model Registry Evaluate the model performance in Vertex Al.
B. Create a logistic regression model in BigQuery ML and register the model in Vertex Al Model Registry. Evaluate the model performance in Vertex Al.
C. Create a linear regression model in BigQuery ML Use the ml. evaluate function to evaluate the model performance.
D. Create a logistic regression model in BigQuery ML Use the ml.confusion_matrix function to evaluate the model performance.


B. Create a logistic regression model in BigQuery ML and register the model in Vertex Al Model Registry. Evaluate the model performance in Vertex Al.
Explanation:

Customer churn is a binary classification problem, where the target variable is whether a customer has churned or not. Therefore, a logistic regression model is more suitable than a linear regression model, which is used for regression problems. A logistic regression model can output the probability of a customer churning, which can be used to rank the customers by their churn risk and take appropriate actions1.

BigQuery ML is a service that allows you to create and execute machine learning models in BigQuery using standard SQL queries2. You can use BigQuery ML to create a logistic regression model for customer churn prediction by using the CREATE MODEL statement and specifying the LOGISTIC_REG model type3. You can use the historical customer data as the input table for the model, and specify the features and the label columns3.

Vertex AI Model Registry is a central repository where you can manage the lifecycle of your ML models4. You can import models from various sources, such as BigQuery ML, AutoML, or custom models, and assign them to different versions and aliases4. You can also deploy models to endpoints, which are resources that provide a service URL for online prediction.

By registering the BigQuery ML model in Vertex AI Model Registry, you can leverage the Vertex AI features to evaluate and monitor the model performance4. You can use Vertex AI Experiments to track and compare the metrics of different model versions, such as accuracy, precision, recall, and AUC. You can also use Vertex AI Explainable AI to generate feature attributions that show how much each input feature contributed to the model’s prediction.

The other options are not suitable for your scenario, because they either use the wrong model type, such as linear regression, or they do not use Vertex AI to evaluate the model performance, which would limit the insights and actions you can take based on the model results.

References:

Logistic Regression for Machine Learning
Introduction to BigQuery ML | Google Cloud
Creating a logistic regression model | BigQuery ML | Google Cloud
Introduction to Vertex AI Model Registry | Google Cloud
[Deploy a model to an endpoint | Vertex AI | Google Cloud]
[Vertex AI Experiments | Google Cloud]




Question # 4

You are profiling the performance of your TensorFlow model training time and notice a performance issue caused by inefficiencies in the input data pipeline for a single 5 terabyte CSV file dataset on Cloud Storage. You need to optimize the input pipeline performance. Which action should you try first to increase the efficiency of your pipeline?
A. Preprocess the input CSV file into a TFRecord file.
B. Randomly select a 10 gigabyte subset of the data to train your model.
C. Split into multiple CSV files and use a parallel interleave transformation.
D. Set the reshuffle_each_iteration parameter to true in the tf.data.Dataset.shuffle method.


A. Preprocess the input CSV file into a TFRecord file.
Explanation:

According to the web search results, the TFRecord format is a recommended way to store large amounts of data efficiently and improve the performance of the data input pipeline123. The TFRecord format is a binary format that can be compressed and serialized, which reduces the I/O overhead and the memory footprint of the data1. The tf.data API provides tools to create and read TFRecord files easily1.

The other options are not as effective as option A. Option B would reduce the amount of data available for training and might affect the model accuracy. Option C would still require reading from a single CSV file at a time, which might not utilize the full bandwidth of the remote storage. Option D would only affect the order of the data elements, not the speed of reading them.




Question # 5

You work for a magazine distributor and need to build a model that predicts which customers will renew their subscriptions for the upcoming year. Using your company’s historical data as your training set, you created a TensorFlow model and deployed it to AI Platform. You need to determine which customer attribute has the most predictive power for each prediction served by the model. What should you do?
A. Use AI Platform notebooks to perform a Lasso regression analysis on your model, which will eliminate features that do not provide a strong signal.
B. Stream prediction results to BigQuery. Use BigQuery’s CORR(X1, X2) function to calculate the Pearson correlation coefficient between each feature and the target variable.
C. Use the AI Explanations feature on AI Platform. Submit each prediction request with the ‘explain’ keyword to retrieve feature attributions using the sampled Shapley method.
D. Use the What-If tool in Google Cloud to determine how your model will perform when individual features are excluded. Rank the feature importance in order of those that caused the most significant performance drop when removed from the model.


C. Use the AI Explanations feature on AI Platform. Submit each prediction request with the ‘explain’ keyword to retrieve feature attributions using the sampled Shapley method.
Explanation:

Option A is incorrect because using AI Platform notebooks to perform a Lasso regression analysis on your model, which will eliminate features that do not provide a strong signal, is not a suitable way to determine which customer attribute has the most predictive power for each prediction served by the model. Lasso regression is a method of feature selection that applies a penalty to the coefficients of the linear model, and shrinks them to zero for irrelevant features1. However, this method assumes that the model is linear and additive, which may not be the case for a TensorFlow model. Moreover, this method does not provide feature attributions for each prediction, but rather for the entire dataset.

Option B is incorrect because streaming prediction results to BigQuery, and using BigQuery’s CORR(X1, X2) function to calculate the Pearson correlation coefficient between each feature and the target variable, is not a valid way to determine which customer attribute has the most predictive power for each prediction served by the model. The Pearson correlation coefficient is a measure of the linear relationship between two variables, ranging from -1 to 12. However, this method does not account for the interactions between features or the non-linearity of the model. Moreover, this method does not provide feature attributions for each prediction, but rather for the entire dataset.

Option C is correct because using the AI Explanations feature on AI Platform, and submitting each prediction request with the ‘explain’ keyword to retrieve feature attributions using the sampled Shapley method, is the best way to determine which customer attribute has the most predictive power for each prediction served by the model. AI Explanations is a service that allows you to get feature attributions for your deployed models on AI Platform3. Feature attributions are values that indicate how much each feature contributed to the prediction for a given instance4. The sampled Shapley method is a technique that uses the Shapley value, a game-theoretic concept, to measure the contribution of each feature to the prediction5. By using AI Explanations, you can get feature attributions for each prediction request, and identify the most important features for each customer.

Option D is incorrect because using the What-If tool in Google Cloud to determine how your model will perform when individual features are excluded, and ranking the feature importance in order of those that caused the most significant performance drop when removed from the model, is not a practical way to determine which customer attribute has the most predictive power for each prediction served by the model. The What-If tool is a tool that allows you to visualize and analyze your ML models and datasets. However, this method requires manually editing or removing features for each instance, and observing the change in the prediction. This method is not scalable or efficient, and may not capture the interactions between features or the non-linearity of the model.

References:

Lasso regression
Pearson correlation coefficient
AI Explanations overview
Feature attributions
Sampled Shapley method
[What-If tool overview]



Helping People Grow Their Careers

1. Updated Machine Learning Engineer Exam Dumps Questions
2. Free Professional-Machine-Learning-Engineer Updates for 90 days
3. 24/7 Customer Support
4. 96% Exam Success Rate
5. Professional-Machine-Learning-Engineer Google Dumps PDF Questions & Answers are Compiled by Certification Experts
6. Machine Learning Engineer Dumps Questions Just Like on
the Real Exam Environment
7. Live Support Available for Customer Help
8. Verified Answers
9. Google Discount Coupon Available on Bulk Purchase
10. Pass Your Google Professional Machine Learning Engineer Exam Easily in First Attempt
11. 100% Exam Passing Assurance

-->